undefined

Two-Stage SQUID Amplifier With Bias Current Re-Use

Year of publication

2025

Authors

Kiviranta, Mikko; Gronberg, Leif

Abstract

<p>Biasing arrangements in multi-channel multi-stage SQUID amplifier systems, such as Transition Edge Sensor matrices for astronomical observation [Barrett et al., 2023] or quantum science [Hummatov et al., 2023], typically require a large number of wires. This is due to the need for two or more cascaded SQUID stages to obtain sufficiently large power gain over a sufficient bandwidth, and due to moderate obtainable multiplexing factors, which forces implementation of many parallel readout chains to serve all the sensor pixels. We suggest an arrangement where one bias line and one flux setpoint line are shared by two cascaded SQUID stages on a single chip, halving the number of lines two cascaded stages would ordinarily require. The stages are connected in series, sharing a single supply current, dual to ordinary integrated transistor circuits in which many transistor stages are connected in parallel and share a single supply voltage. We show experimental results at T = 4.2 K for a proof-of-concept amplifier chip, fabricated in the VTT Micronova foundry, using SWAPS Josephson junctions [Grönberg et al., 2017] at JC = 20 A / (m)2 critical current density. The device shows larger than 3 k transresistance, when operating from LIN = 29 nH input inductance to RD &lt; 150 output dynamic resistance.</p>
Show more

Organizations and authors

VTT Technical Research Centre of Finland Ltd

Gronberg Leif Orcid -palvelun logo

Kiviranta Mikko Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

35

Issue

5

​Publication forum

57516

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

No

Other information

Fields of science

Electronic, automation and communications engineering, electronics

Keywords

[object Object],[object Object],[object Object],[object Object]

Language

English

International co-publication

No

Co-publication with a company

No

DOI

10.1109/TASC.2024.3514594

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes