Uniform Physics Informed Neural Network Framework for Microgrid and its application in voltage stability analysis
Year of publication
2025
Authors
Feng, Renhai; Wajid, Khan; Faheem, Muhammad; Wang, Jiang; Subhan, Fazal E.; Bhutta, Muhammad Shoaib
Abstract
This paper focus on the application of Physics Informed Neural Network (PINN) for extracting parameters of photovoltaic (PV), wind, and energy storage equipment models. Accurately extracting the parameters of these models is essential for effectively controlling and optimizing the overall stability of Chongqing power system (CPS). Despite numerous algorithms proposed to tackle this issue, accurately and reliably extracting the parameters of these remains a significant challenge. This paper proposed an improved PINN, named Uniform Physics Informed Neural Network (UPINN), with Proximal Policy Optimization (PPO) based reinforcement learning, for extortion of parameters of these models. The PINN difficulty is overcome in UPINN by configuring four strategies: feedback operator, GRU gating mechanisms, transfer operator with historic population, and modification factor with PPO aided reinforcement learning. UPINN models are trained iteratively to maximize parameters and reduce RMSE. UPINN accurately extracts parameters and describes the behavior of PV, wind, and energy storage equipment models as it converges towards optimal solutions through parameter adjustments and RMSE evaluations. The UPINN was implemented for real-time voltage stability monitoring of CPS. The results show that UPINN performs better than other neural network models in respect of accuracy and stability, demonstrating the effectiveness of improved strategies. Moreover, its emphasis the importance of computed and estimated indices obtained through UPINN for predicting voltage collapse occurrences within the system.
Show moreOrganizations and authors
VTT Technical Research Centre of Finland Ltd
Faheem Muhammad
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Volume
13
Pages
8110-8126
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
License of the publisher’s version
CC BY
Self-archived
No
Other information
Fields of science
Electronic, automation and communications engineering, electronics
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Language
English
International co-publication
Yes
Co-publication with a company
Yes
DOI
10.1109/ACCESS.2025.3527047
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes