Hybrid regression method to predict forest variables from Earth observation data in boreal forests
Year of publication
2025
Authors
Halme, Eelis; Mõttus, Matti
Abstract
Satellite remote sensing is essential for monitoring the boreal forest, the largest land biome on Earth. With the growing volume of Earth observation (EO) data and increasing demand for actionable information, more efficient and robust monitoring methods are needed. Machine learning-based approaches offer flexibility but rely on extensive training data, which can be generated with reflectance models. This study introduces a hybrid regression method, integrating the forest reflectance and transmittance model FRT with a random forest regressor. Using a representative dataset from Finland (24 081 plots), the method was trained to predict structural boreal forest variables: mean height, mean diameter at breast height (DBH) and basal area from EO data. The prediction performance was evaluated using three independent test areas, two from Finland and one from Sweden. In Finland, the most accurate predictions had root-mean-square errors of 3.6 m (19.1%) for height, 6.3 cm (27.3%) for DBH and 9.9 m²/ha (31.6%) for basal area. In Sweden, low R² values (< 0.1) indicated limitations in transferability. The results suggest that combining reflectance modelling with machine learning can advance environmental monitoring methodologies in the boreal forest but also demonstrate the challenges of applying these methods across different geographical regions.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Volume
58
Issue
1
Article number
2462032
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
License of the publisher’s version
CC BY
Self-archived
No
Other information
Fields of science
Electronic, automation and communications engineering, electronics
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1080/22797254.2025.2462032
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes