undefined

Comparative In Silico Structural Analysis of PHA Synthases from industrially Prominent PHA Producers

Year of publication

2025

Authors

Pinar Orkun

Abstract

Abstract Environmental issues from petroleum-based plastics have intensified due to long-term accumulation. Their persistence harms marine and terrestrial life, disrupting food chains, and spreading microplastics. Increased plastic usage driven by industrialization, modern lifestyles, and disposable products contributes to this problem. An effective strategy to mitigate plastic’s negative impact includes waste reduction, recycling, and the development of biodegradable biopolymers. In this sense, polyhydroxyalkanoate (PHA) synthase (PhaC) is a vital enzyme for cost-effective biopolymer/bioplastic production. Thus, this study investigated four different genera (Azotobacter, Bacillus, Cupriavidus, and Halomonas) that are well-known PHA/Polyhydroxybutyrate (PHB) producers, selected due to their proven industrial capability and metabolic versatility in PHA/PHB biosynthesis. Since there has been inadequate information based on the three-dimensional (3D) structures of PHA synthase(s), this is the first report to assess the PHA synthase(s) of these indicated genera by conducting in silico comparative analyses on AlphaFold predicted structures. Furthermore, frustration analysis revealed structural similarities among Azotobacter, Cupriavidus, and Halomonas PHA synthases, while Bacillus exhibited a distinct profile. Identifying highly frustrated residues in potential substrate-binding regions offers insights into their functional dynamics and engineering potential. Molecular docking analysis was also performed to assess interactions between AlphaFold-predicted enzyme structures and their substrates, quantifying the binding energy of enzyme-substrate complexes. The findings of this work will contribute to the engineering of PHA synthase(s) of PHA/PHB producers with the simultaneous understanding of predicted 3D structures using the advanced capabilities of AlphaFold. This understanding will support the creation of more efficient and sustainable bioplastics for the future.
Show more

Organizations and authors

LUT University

Pinar Orkun Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Journal/Series

Catalysis Letters

Volume

155

Article number

148

​Publication forum

53163

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

Self-archived

No

Other information

Fields of science

Chemical engineering

Internationality of the publisher

International

International co-publication

No

Co-publication with a company

No

DOI

10.1007/s10562-025-04974-1

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes