Joint Evaluation of Fairness and Relevance in Recommender Systems with Pareto Frontier
Year of publication
2025
Authors
Rampisela Theresia Veronika; Ruotsalo Tuukka; Maistro Maria; Lioma Christina
Abstract
Fairness and relevance are two important aspects of recommender systems (RSs). Typically, they are evaluated either (i) separately by individual measures of fairness and relevance, or (ii) jointly using a single measure that accounts for fairness with respect to relevance. However, approach (i) often does not provide a reliable joint estimate of the goodness of the models, as it has two different best models: one for fairness and another for relevance. Approach (ii) is also problematic because these measures tend to be ad-hoc and do not relate well to traditional relevance measures, like NDCG. Motivated by this, we present a new approach for jointly evaluating fairness and relevance in RSs: Distance to Pareto Frontier (DPFR). Given some user-item interaction data, we compute their Pareto frontier for a pair of existing relevance and fairness measures, and then use the distance from the frontier as a measure of the jointly achievable fairness and relevance. Our approach is modular and intuitive as it can be computed with existing measures. Experiments with 4 RS models, 3 re-ranking strategies, and 6 datasets show that existing metrics have inconsistent associations with our Pareto-optimal solution, making DPFR a more robust and theoretically well-founded joint measure for assessing fairness and relevance. Our code: https://github.com/theresiavr/DPFR-recsys-evaluation
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Conference
Article type
Other article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A4 Article in conference proceedingsPublication channel information
Parent publication name
Conference
Pages
1548-1566
ISBN
Publication forum
Publication forum level
3
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Computer and information sciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
International co-publication
Yes
Co-publication with a company
No
DOI
10.1145/3696410.3714589
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes