Exploring the hydration potential and kinetics of Na-Ye'elimite and Ti-Ferrite solid solutions
Year of publication
2026
Authors
Roy, Rahul; Hertel, Tobias; Rößler, Christiane; Pontikes, Yiannis
Abstract
The addition of Bauxite residue in the raw mix introduces Na+ and Ti4+ into the crystalline phases of calcium-sulfoaluminate (CSA) clinkers. To mimic such a system, Na-Fe-ye'elimite (C₃.₉N₀.₁A₂.₈F₀.₂Ŝ) and Ti-ferrite (C₂F₀.₇₆A₀.₂₄T₀.₁) were synthesized at 1285 °C, 2 h, and 1320 °C, 3 h, respectively. Quantitative X-ray diffraction (QXRD) revealed solid solutions with minor Ca-aluminates phases, whereas electron backscattered diffraction-energy dispersive spectroscopy (EBSD-EDS) could distinguish Na-rich orthorhombic and Fe-rich cubic ye'elimite polymorphs. Isothermal calorimetry showed the Na-Fe-ye'elimite phase drives early heat evolution, whereas higher ferrite and gypsum (M > 0) prolong induction and attenuate the main hydration peak. In ferrite-free mixes, the cubic-ye'elimite polymorph dissolves fastest, but when ferrite exceeds 33 wt%, its Fe3+ release accelerates orthorhombic-ye'elimite dissolution, as confirmed by pore-solution analysis. After 28d, Na-Fe-ye'elimite is fully consumed at M (sulfate to ye'elimite molar ratio) ≥ 2 for ye'elimite-ferrite mixes, while ferrite remains partly inert, possibly from Ca2+/SO₄2− adsorb onto its Fesingle bondAl surface. Limiting ferrite to ≤33 wt% is recommended to achieve more densification of the microstructure for better performance.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Volume
199
Article number
108046
ISSN
Publication forum
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
License of the publisher’s version
CC BY
Self-archived
No
Other information
Fields of science
Materials engineering
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.cemconres.2025.108046
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes