Large Eddy Simulation of environmental impacts on mass transport in laboratory-scale vertical farm
Year of publication
2026
Authors
Ashnani, Ali A.; Laitinen, Alpo; Karimkashi, Shervin; Vuorinen, Ville; Kotilainen, Titta; Näkkilä, Juha; Herranen, Pasi; Kaario, Ossi
Abstract
The impact of environmental factors on airflow and mass transport within a laboratory-scale vertical farm is investigated using Computational Fluid Dynamics. Large Eddy Simulation models complex airflow behaviour, while solving enthalpy and mass transport equations yields temperature, humidity, and CO2 concentration. The Eulerian-Lagrangian approach simulates the free-fall of water droplets in the dehumidifier-cooling system. Humidity and CO2 consumption/production by plants and utilities are modelled as volumetric sources/sinks. An experimental campaign is conducted to measure temperature, relative humidity, and CO2 above cultivation beds, validating the numerical setup with mean absolute errors of 0.8%, 2.2%, and 3.9%, respectively. Analysing the airflow shows that the free fall of droplets is the dominant mechanism driving airflow characteristics. We investigate the effects of wall confinement, number of lamps, and location of lamps on the mass transport. Curtains were used to divide each cultivation bed into three regions to assess the wall confinement effect. Results show the overall adverse effect of curtains on mass transport. In more detail, mass transport is enhanced when the curtains and streamlines are aligned parallel, whereas it is reduced when they are perpendicular. Increasing the number of operative lamps improves the uniformity of mass distribution on the upper cultivation beds due to a stronger positive buoyancy. Positioning lamp-induced buoyant flow within the droplet’s lateral momentum injection zone further enhances vertical mass transport. These findings highlight the impact of environmental factors on mass transport, offering insights for more efficient designs of indoor vertical farms.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
256
Article number
127964
Pages
15 p.
ISSN
Publication forum
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
License of the publisher’s version
CC BY
Self-archived
Yes
Other information
Fields of science
Other engineering and technologies
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
United Kingdom
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.ijheatmasstransfer.2025.127964
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes