Multimodal Sensory-Motorized Material Systems
Acronym
MULTIMODAL
Description of the granted funding
WHAT:
MULTIMODAL will develop sensory-motorized material systems that perceive several coupled environmental stimuli and respond to a combination of these via controlled motor functions, shape-change or locomotion. The sensory-motorized materials will be “trained” to strengthen upon repetitive action, they can “heal” upon injury, and mechanically adapt to different environments. They will be utilized in the design of soft robots with autonomous and interactive functions.
HOW:
We will utilize shape-changing liquid crystal networks (LCNs) that undergo controlled untethered motions in response to photochemical, (photo)thermal, and humidity-triggered activation. Coupling between these stimuli will allow for gated control strategies over the shape changes. I expect that the gated control strategies, in combination with stimuli-induced diffusion from surface to bulk of the LCN, will enable advanced robotic functionalities. The diffusion process will be used for supramolecular crosslinking and formation of interpenetrated dynamic polymer networks with the LCN, to allow for trainable gaiting for versatile locomotion control. We will also make mechanically adaptable amphibious grippers for autonomous object recognition.
WHY:
Technological disruptions are often due to new materials and fabrication technologies. Paradigm changes on how materials are perceived have profound effects on our society, well-being, and the ways we see the world. Here, we strive for a paradigm change in robotic materials. By taking inspiration from biological sensory-motor interactions, we will develop MULTIMODAL materials with autonomous and interactive features. These features go far beyond the capabilities of conventional stimuli-responsive materials, allowing us to take inanimate, shape-changing materials one ambitious step closer to motor functions of living species.
Show moreStarting year
2023
End year
2027
Granted funding
Coordinator
Amount granted
1 998 760 €
Funder
European Union
Funding instrument
Support for frontier research (ERC)
Framework programme
Horizon Europe (HORIZON)
Call
Programme part
European Research Council (ERC) (11675Topic
ERC CONSOLIDATOR GRANTS (ERC-2021-COGCall ID
ERC-2021-COG Other information
Funding decision number
101045223
Identified topics
robots, robotics