undefined

Plasmon Excitations in Mixed Metallic Nanoarrays

Year of publication

2019

Authors

Conley, Kevin M.; Nayyar, Neha; Rossi, Tuomas P.; Kuisma, Mikael; Turkowski, Volodymyr; Puska, Martti J.; Rahman, Talat S.

Abstract

Features of the surface plasmon from macroscopic materials emerge in molecular systems, but differentiating collective excitations from single-particle excitations in molecular systems remains elusive. The rich interactions between single-particle electron-hole and collective electron excitations produce phenomena related to the chemical physics aspects within the atomic array. We study the plasmonic properties of atomic arrays of noble (Au, Ag, and Cu) and transition-metal (Pd, Pt) homonuclear chains using time-dependent density functional theory and their Kohn-Sham transition contributions. The response to the electromagnetic radiation is related to both the geometry-dependent confinement of sp-valence electrons and the energy position of d-electrons in the different atomic species and the hybridization between d and sp electrons. It is possible to tune the position of the plasmon resonance, split it into several peaks, and eventually achieve broadband absorption of radiation. Arrays of mixed noble and transition-metal chains may have strongly attenuated plasmonic behavior. The collective nature of the excitations is ascertained using their Kohn-Sham transition contributions. To manipulate the plasmonic response and achieve the desired properties for broad applications, it is vital to understand the origins of these phenomena in atomic chains and their arrays. © 2019 American Chemical Society.
Show more

Organizations and authors

Aalto University

Conley Kevin Orcid -palvelun logo

Puska Martti Orcid -palvelun logo

Rahman Talat

Rossi Tuomas Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Journal/Series

Acs nano

Volume

13

Issue

5

Pages

5344-5355

​Publication forum

50183

​Publication forum level

3

Open access

Open access in the publisher’s service

No

Self-archived

Yes

Other information

Fields of science

Physical sciences; Chemical sciences

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1021/acsnano.8b09826

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes