Disentangling the effects of methanogen community and environment on peatland greenhouse gas production by a reciprocal transplant experiment
Year of publication
2020
Authors
Juottonen, Heli
Abstract
Northern peatlands consist of a mosaic of peatland types that vary spatially and temporally and differ in their methane (CH4) production. Microbial community composition and environment both potentially control the processes that release carbon from anoxic peat either as CH4 or carbon dioxide (CO2), a less potent greenhouse gas than CH4. However, the respective roles of these controls remain unclear, which prevents incorporating microbes in the predictions of peatland CH4 emissions. 2.Here, a reciprocal transplant experiment was carried out to separate the influences of microbial community and environment in CH4 and anaerobic CO2 production. Peat from an acidic Sphagnum bog and a sedge fen with higher pH was enclosed in membrane bags with a pore size of 0.2 µm, preventing microbial colonization from the outside, and transplanted in the field for two months. 3.Potential CH4 production was primarily controlled by the environment. The conditions in the bog suppressed the initially higher activity of fen methanogens and reduced CH4 production by 79%. Against expectations, the inhibition was not specific to acetate‐using Methanotrichaceae. Reciprocal transplantation favoured Methanosarcinaceae and potentially methylotrophic methanogenesis in general. Bog methanogens, mostly hydrogenotrophic Methanoregulaceae, retained their community structure and activity in the fen with a slight increase (+37%) in CH4 production. 4.Anaerobic CO2 production was controlled by both the microbial community and the environment. Transplantation led to increased CO2 production in both bog (+50%) and fen peat (+57%) with distinct bacterial community, showing that the new environment directed more carbon to other anaerobic processes than methanogenesis. 5.Taken together, these results relate differences in CH4 production of bogs and fens to ecophysiology of specific methanogen groups. The sensitiveness of fen methanogens to the acidic conditions in Sphagnum bogs can help explain the decrease of CH4 emission in the typical boreal peatland succession from young fens to older bogs. Increase in anaerobic CO2 vs. CH4 production with transplantation shows that disturbances of boreal peatlands can activate poorly defined pathways of anaerobic decomposition.
Show moreOrganizations and authors
University of Helsinki
Juottonen Heli
Natural Resources Institute Finland
Juottonen Heli
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Parent publication name
Publisher
Volume
34
Issue
6
Pages
1268-1279
ISSN
Publication forum
Publication forum level
2
Open access
Open access in the publisher’s service
No
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Environmental sciences; Ecology, evolutionary biology; Plant biology, microbiology, virology
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
United Kingdom
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1111/1365-2435.13536
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes