Nitrate removal microbiology in woodchip bioreactors : a case-study with full-scale bioreactors treating aquaculture effluents
Year of publication
2020
Authors
Aalto, Sanni L.; Suurnäkki, Suvi; von Ahnen, Mathis; Siljanen, Henri M. P.; Pedersen, Per Bovbjerg; Tiirola, Marja
Abstract
Woodchip bioreactors are viable low-cost nitrate (NO3−) removal applications for treating agricultural and aquaculture discharges. The active microbial biofilms growing on woodchips are conducting nitrogen (N) removal, reducing NO3− while oxidizing the carbon (C) from woodchips. However, bioreactor age, and changes in the operating conditions or in the microbial community might affect the NO3− removal as well as potentially promote nitrous oxide (N2O) production through either incomplete denitrification or dissimilatory NO3− reduction to ammonium (DNRA). Here, we combined stable isotope approach, amplicon sequencing, and captured metagenomics for studying the potential NO3− removal rates, and the abundance and community composition of microbes involved in N transformation processes in the three different full-scale woodchip bioreactors treating recirculating aquaculture system (RAS) effluents. We confirmed denitrification producing di‑nitrogen gas (N2) to be the primary NO3− removal pathway, but found that 6% of NO3− could be released as N2O under high NO3− concentrations and low amounts of bioavailable C, whereas DNRA rates tend to increase with the C amount. The abundance of denitrifiers was equally high between the studied bioreactors, yet the potential NO3− removal rates were linked to the denitrifying community diversity. The same core proteobacterial groups were driving the denitrification, while Bacteroidetes dominated the DNRA carrying microbes in all the three bioreactors studied. Altogether, our results suggest that woodchip bioreactors have a high genetic potential for NO3− removal through a highly abundant and diverse denitrifying community, but that the rates and dynamics between the NO3− removal pathways depend on the other factors (e.g., bioreactor design, operating conditions, and the amount of bioavailable C in relation to the incoming NO3− concentrations).
Show moreOrganizations and authors
University of Eastern Finland
Siljanen Henri
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Volume
723
Pages
138093
ISSN
Publication forum
Publication forum level
2
Open access
Open access in the publisher’s service
No
Self-archived
Yes
Other information
Fields of science
Environmental biotechnology; Environmental sciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
Netherlands
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.scitotenv.2020.138093
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes