TanDEM-X multiparametric data features in sea ice classification over the Baltic sea
Year of publication
2020
Authors
Marbouti, Marjan; Antropov, Oleg; Praks, Jaan; Eriksson, Patrick B.; Arabzadeh, Vahid; Rinne, Eero; Leppäranta, Matti
Abstract
<p>In this study, we assess the potential of X-band Interferometric Synthetic Aperture Radar imagery for automated classification of sea ice over the Baltic Sea. A bistatic SAR scene acquired by the TanDEM-X mission over the Bothnian Bay in March of 2012 was used in the analysis. Backscatter intensity, interferometric coherence magnitude, and interferometric phase have been used as informative features in several classification experiments. Various combinations of classification features were evaluated using Maximum likelihood (ML), Random Forests (RF) and Support Vector Machine (SVM) classifiers to achieve the best possible discrimination between open water and several sea ice types (undeformed ice, ridged ice, moderately deformed ice, brash ice, thick level ice, and new ice). Adding interferometric phase and coherence-magnitude to backscatter-intensity resulted in improved overall classification performance compared to using only backscatter-intensity. The RF algorithm appeared to be slightly superior to SVM and ML due to higher overall accuracies, however, at the expense of somewhat longer processing time. The best overall accuracy (OA) for three methodologies were achieved using combination of all tested features were 71.56, 72.93, and 72.91% for ML, RF and SVM classifiers, respectively. Compared to OAs of 62.28, 66.51, and 63.05% using only backscatter intensity, this indicates strong benefit of SAR interferometry in discriminating different types of sea ice. In contrast to several earlier studies, we were particularly able to successfully discriminate open water and new ice classes.</p>
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Parent publication name
Volume
24
Issue
2
Pages
313-332
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Computer and information sciences; Physical sciences; Electronic, automation and communications engineering, electronics; Business and management; Geosciences; Environmental sciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1080/10095020.2020.1845574
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes