undefined

PP/PP-HI/silica nanocomposites for HVDC cable insulation: Are silica clusters beneficial for space charge accumulation?

Year of publication

2021

Authors

He, Xiaozhen; Rytöluoto, Ilkka; Seri, Paolo; Anyszka, Rafal; Mahtabani, Amirhossein; Naderiallaf, Hadi; Niittymäki, Minna; Saarimäki, Eetta; Mazel, Christelle; Perego, Gabriele; Lahti, Kari; Paajanen, Mika; Dierkes, Wilma; Blume, Anke

Abstract

New potential High Voltage Direct Current (HVDC) cable insulation materials based on nanocomposites are developed in this study. The nanocomposites are produced by blending of polypropylene (PP), propylene-ethylene copolymer (PP–HI) and a modified fumed silica (A-silica) in a concentration of 1 and 2 wt %. The A-silica is successfully modified with (3-aminopropyl)triethoxysilane (APTES) via a solvent-free method, as proven by infrared spectroscopy, thermogravimetry and transmission electron microscope mapping. A-silica in the polymer matrix acts as a nucleating agent resulting in an increase of the crystallization temperature of the polymers and a smaller crystal size. Moreover, the silica addition modified the crystals morphology of the unfilled PP/PP-HI blend. The composite containing A-silica with 2 wt% contains bigger-size silica clusters than the composite filled with 1 wt%. The composite with the higher A-silica concentration shows lower space charge accumulation and a lower charge current value. Besides, much deeper traps and lower trap density are observed in the composite with 2 wt% A-silica addition compared to the one with a lower concentration. Surprisingly, the presence of silica clusters with dimensions of more than 200 nm exhibit a positive effect on reducing the space charge accumulation. However, the real cause of this improvement might be due to change of the electron distribution stemming from the amine-amine hydrogen bond formation, or the change of the chain mobility due to the presence of occluded polymer macromolecules constrained inside the high structure silica clusters. Both phenomena may lead to a higher energetic barrier of charge de-trapping, thus increasing the depth of the charge traps.
Show more

Organizations and authors

Tampere University

Rytöluoto Ilkka Orcid -palvelun logo

Lahti Kari Orcid -palvelun logo

Niittymäki Minna Orcid -palvelun logo

VTT Technical Research Centre of Finland Ltd

Saarimäki Eetta Orcid -palvelun logo

Rytöluoto Ilkka Orcid -palvelun logo

Paajanen Mika

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Journal/Series

Polymer testing

Volume

98

Article number

107186

​Publication forum

65267

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Fully open publication channel

License of the publisher’s version

CC BY

Self-archived

Yes

Other information

Fields of science

Chemical sciences; Electronic, automation and communications engineering, electronics; Materials engineering

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

Yes

DOI

10.1016/j.polymertesting.2021.107186

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes