Comparable response of wild rodent gut microbiome to anthropogenic habitat contamination
Year of publication
2021
Authors
Lavrinienko, Anton; Hämaläinen, Anni; Hindström, Rasmus; Tukalenko, Eugene; Boratynski, Zbyszek; Kivisaari, Kati; Mousseau, Timothy A.; Watts, Phillip C.; Mappes, Tapio
Abstract
Species identity is thought to dominate over environment in shaping wild rodent gut microbiota, but it remains unknown whether the responses of host gut microbiota to shared anthropogenic habitat impacts are species‐specific or if the general gut microbiota response is similar across host species. Here, we compare the influence of exposure to radionuclide contamination on the gut microbiota of four wild mouse species: Apodemus flavicollis, A. sylvaticus, A. speciosus, A. argenteus. Building on the evidence that radiation impacts bank vole (Myodes glareolus) gut microbiota, we hypothesised that radiation exposure has general impact on rodent gut microbiota. Because we sampled (n=288) two species pairs of Apodemus mice that occur in sympatry in habitats affected by the Chernobyl and Fukushima nuclear accidents, these comparisons provide an opportunity for a general assessment of the effects of exposure to environmental contamination (radionuclides) on gut microbiota across host phylogeny and geographical areas. In general agreement with our hypothesis, analyses of bacterial 16S rRNA gene sequences revealed that radiation exposure alters the gut microbiota composition and structure in three out of the four species of Apodemus mice. The notable lack of association between the gut microbiota and soil radionuclide contamination in one mouse species from Fukushima (A. argenteus) likely reflects host “radiation escape” through its unique tree‐dwelling lifestyle. The finding that host ecology can modulate effects of radiation exposure offers an interesting counterpoint for future analyses into effects of radiation or any other toxic exposure on host and its associated microbiota. Our data show that exposure to radionuclide contamination associates with comparable gut microbiota responses across multiple species of rodents.
Show moreOrganizations and authors
University of Oulu
Hämäläinen Anni Marjukka
Lavrinienko Anton
Watts Phillip Charles
Tukalenko Yevhen
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
30
Issue
14
Article number
mec.15945
Pages
3485-3499
ISSN
Publication forum
Publication forum level
3
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Ecology, evolutionary biology
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
United Kingdom
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1111/mec.15945
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes