undefined

Potassium demineralization of coconut fiber via combined hydrothermal treatment and washing : effect on pyrolysis kinetics, mechanisms, and bio-oil composition

Year of publication

2021

Authors

Hungwe, Douglas; Ullah, Saleem; Kilpeläinen, Petri; Theppitak, Sarut; Ding, Lu; Takahashi, Fumitake

Abstract

Producing clean energy from waste biomass via pyrolysis is critical in reducing dependence on fossil fuels and alleviating their environmental impacts. Inherent potassium in low energy density coconut fibers reduces bio-oil yield and compromises bio-oil quality and the integrity of reactors within which pyrolysis occurs. The effect of consecutive hydrothermal treatment (180°C-220 °C) and water washing on coconut fiber demineralization, pyrolysis behavior, and bio-oil composition was investigated. Chemical fractionation method classified the most occurring inorganic (potassium) as ~76% water-soluble, ~19% ion-exchangeable, and ~5% acid-soluble species. Demineralization results show that combined pretreatment at ≤200 °C leached out all water-soluble and exchangeable potassium. However, at 220 °C, electrostatic attraction and increased tortuosity imposed by the high density of oxygenated functional groups and a well-developed porous structure hamper demineralization. Nevertheless, a maximum potassium removal efficiency of 95% could be achieved. Although pretreatment marginally affects apparent activation energy, the reaction mechanism of hydrochars became insensitive to the heating rate between 10 and 50 °C min−1. Due to pretreatment, the selectivity of thermally stable phenolic and anhydrosugar derivatives increased at the expense of the light oxygenates of low thermal stability because of suppressing fragmentation reactions and enriching polymers with a high degree of polymerization. Light oxygenates decreased from 27.45 area % to 24.02, 16.33, and 13.32 area % for hydrochars produced at 180 °C, 200 °C, and 220 °C, respectively. Therefore, this pretreatment approach can produce inorganic-free, thermally stable, and chemically stable bio-oils.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Publisher

Elsevier

Volume

152

Article number

106194

Pages

10 p.

​Publication forum

52398

​Publication forum level

2

Open access

Open access in the publisher’s service

No

Self-archived

No

Other information

Fields of science

Chemical sciences

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.biombioe.2021.106194

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes