LED-Based Photoacoustic NO<sub>2</sub>Sensor with a Sub-ppb Detection Limit
Year of publication
2021
Authors
Karhu, Juho; Hieta, Tuomas; Manoocheri, Farshid; Vainio, Markku; Ikonen, Erkki
Abstract
<p>A high-sensitivity light-emitting diode (LED)-based photoacoustic NO2 sensor is demonstrated. Sensitive photoacoustic gas sensors based on incoherent light sources are typically limited by background noise and drifts due to a strong signal generated by light absorbed at the photoacoustic cell walls. Here, we reach a sub-ppb detection limit and excellent stability using cantilever-enhanced photoacoustic detection and perform a two-channel relative measurement. A white-light LED is used as a light source, and the spectrum is divided into two wavelength channels with a dichroic filter. The photoacoustic signals generated by the two wavelength channels are measured simultaneously and used to solve the NO2 concentration. The background signal is highly correlated between the two channels, and its variations are suppressed in the relative measurement. A noise level below 1 ppb is reached with an averaging time of 70 s. This is, to the best of our knowledge, the first time a sub-ppb detection limit is demonstrated with an LED-based photoacoustic NO2 sensor. As LEDs are available at a wide selection of emission wavelengths, the results show great potential for development of cost-effective and sensitive detectors for a variety of other trace gasses as well.</p>
Show moreOrganizations and authors
University of Helsinki
Vainio Markku
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Parent publication name
Volume
6
Issue
9
Pages
3303-3307
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Physical sciences; Chemical sciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
Yes
DOI
10.1021/acssensors.1c01073
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes