Vital Sign Monitoring Using FMCW Radar in Various Sleeping Scenarios
Year of publication
2020
Authors
Turppa, Emmi; Kortelainen, Juha M.; Antropov, Oleg; Kiuru, Tero
Abstract
Remote monitoring of vital signs for studying sleep is a user-friendly alternative to monitoring with sensors attached to the skin. For instance, remote monitoring can allow unconstrained movement during sleep, whereas detectors requiring a physical contact may detach and interrupt the measurement and affect sleep itself. This study evaluates the performance of a cost-effective frequency modulated continuous wave (FMCW) radar in remote monitoring of heart rate and respiration in scenarios resembling a set of normal and abnormal physiological conditions during sleep. We evaluate the vital signs of ten subjects in different lying positions during various tasks. Specifically, we aim for a broad range of both heart and respiration rates to replicate various real-life scenarios and to test the robustness of the selected vital sign extraction methods consisting of fast Fourier transform based cepstral and autocorrelation analyses. As compared to the reference signals obtained using Embla titanium, a certified medical device, we achieved an overall relative mean absolute error of 3.6% (86% correlation) and 9.1% (91% correlation) for the heart rate and respiration rate, respectively. Our results promote radar-based clinical monitoring by showing that the proposed radar technology and signal processing methods accurately capture even such alarming vital signs as minimal respiration. Furthermore, we show that common parameters for heart rate variability can also be accurately extracted from the radar signal, enabling further sleep analyses.
Show moreOrganizations and authors
Tampere University
Turppa Emmi
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
License of the publisher’s version
CC BY
Self-archived
Yes
Article processing fee (EUR)
1667
Year of payment for the open publication fee
2020
Other information
Fields of science
Physical sciences; Chemical sciences; Electronic, automation and communications engineering, electronics; Biochemistry, cell and molecular biology
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.3390/s20226505
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes