undefined

Merger of dark matter axion clumps and resonant photon emission

Year of publication

2020

Authors

Hertzberg, Mark P.; Li, Yao; Schiappacasse, Enrico D.

Abstract

A portion of light scalar dark matter, especially axions, may organize into gravitationally bound clumps (stars) and be present in large number in the galaxy today. It is therefore of utmost interest to determine if there are novel observational signatures of this scenario. Work has shown that for moderately large axion-photon couplings, such clumps can undergo parametric resonance into photons, for clumps above a critical mass Mਮc determined precisely by some of us in ref. [1]. In order to obtain a clump above the critical mass in the galaxy today would require mergers. In this work we perform full 3-dimensional simulations of pairs of axion clumps and determine the conditions under which mergers take place through the emission of scalar waves, including analyzing head-on and non-head-on collisions, phase dependence, and relative velocities. Consistent with other work in the literature, we find that the final mass from the merger Mਮfinal≈ 0.7(Mਮ1+Mਮ2) is larger than each of the original clump masses (for Mਮ1∼ Mਮ2). Hence, it is possible for sub-critical mass clumps to merge and become super-critical and therefore undergo parametric resonance into photons. We find that mergers are expected to be kinematically allowed in the galaxy today for high Peccei-Quinn scales, which is strongly suggested by unification ideas, although the collision rate is small. While mergers can happen for axions with lower Peccei-Quinn scales due to statistical fluctuations in relative velocities, as they have a high collision rate. We estimate the collision and merger rates within the Milky Way galaxy today. We find that a merger leads to a flux of energy on earth that can be appreciable and we mention observational search strategies.
Show more

Organizations and authors

University of Helsinki

Schiappacasse Enrico D.

University of Jyväskylä

Schiappacasse Enrico Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

2020

Issue

7

Article number

067

​Publication forum

60067

​Publication forum level

1

Open access

Open access in the publisher’s service

No

Self-archived

Yes

Other information

Fields of science

Physical sciences; Astronomy and space science

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object]

Publication country

United Kingdom

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1088/1475-7516/2020/07/067

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes