undefined

Assessing the influence of the temporal resolution on the electric vehicle charging load modeling accuracy

Year of publication

2022

Authors

Simolin, Toni; Rauma, Kalle; Rautiainen, Antti; Järventausta, Pertti; Rehtanz, Christian

Abstract

In the scientific literature, various temporal resolutions have been used to model electric vehicle charging loads. However, in most studies, the used temporal resolution lacks a proper justification. To provide a strengthened theoretical background for all future studies related to electric vehicle charging load modeling, this paper investigates the influence of temporal resolution in different scenarios. To ensure reliable baselines for the comparisons, hardware-in-the-loop simulations with different commercial electric vehicles are carried out. The conducted hardware-in-the-loop simulations consists of 134 real charging sessions in total. In order to compare the influence of different temporal resolutions, a simulation model is developed. The simulation model utilizes comprehensive preliminary measurement-based charging profiles that can be used to model controlled charging in fine detail. The simulation results demonstrate that the simulation model provides sufficiently accurate results in most cases with a temporal resolution of one second. Conversely, a temporal resolution of 3600 s may lead to a modeling error of 50% or even higher. Additionally, the paper shows that the necessary resolution to achieve a modeling error of 5% or less vary between 1 and 900 s depending on the scenario. However, in most cases, resolution of 60 s is reasonably accurate.
Show more

Organizations and authors

Tampere University

Järventausta Pertti Orcid -palvelun logo

Simolin Toni Orcid -palvelun logo

Rautiainen Antti

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

208

Article number

107913

​Publication forum

55123

​Publication forum level

2

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

Yes

Other information

Fields of science

Electronic, automation and communications engineering, electronics

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.epsr.2022.107913

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes