undefined

Optogenetic Control of Bacterial Expression by Red Light

Year of publication

2022

Authors

Multamäki, Elina; de Fuentes, Andres Garcia; Sieryi, Oleksii; Bykov, Alexander; Gerken, Uwe; Ranzani, Americo Tavares; Koehler, Juergen; Meglinski, Igor; Moeglich, Andreas; Takala, Heikki

Abstract

In optogenetics, as in nature, sensory photoreceptors serve to control cellular processes by light. Bacteriophytochrome (BphP) photoreceptors sense red and far-red light via a biliverdin chromophore and, in response, cycle between the spectroscopically, structurally, and functionally distinct Pr and Pfr states. BphPs commonly belong to two-component systems that control the phosphorylation of cognate response regulators and downstream gene expression through histidine kinase modules. We recently demonstrated that the paradigm BphP from Deinococcus radiodurans exclusively acts as a phosphatase but that its photosensory module can control the histidine kinase activity of homologous receptors. Here, we apply this insight to reprogram two widely used setups for bacterial gene expression from blue-light to red-light control. The resultant pREDusk and pREDawn systems allow gene expression to be regulated down and up, respectively, uniformly under red light by 100-fold or more. Both setups are realized as portable, single plasmids that encode all necessary components including the biliverdin-producing machinery. The triggering by red light affords high spatial resolution down to the single-cell level. As pREDusk and pREDawn respond sensitively to red light, they support multiplexing with optogenetic systems sensitive to other light colors. Owing to the superior tissue penetration of red light, the pREDawn system can be triggered at therapeutically safe light intensities through material layers, replicating the optical properties of the skin and skull. Given these advantages, pREDusk and pREDawn enable red-light-regulated expression for diverse use cases in bacteria.
Show more

Organizations and authors

University of Oulu

Bykau Aliaksander Orcid -palvelun logo

Meglinski Igor Orcid -palvelun logo

Sieryi Oleksii Orcid -palvelun logo

University of Helsinki

Multamäki Elina

Takala Heikki

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Parent publication name

Systems and Synthetic Biology

Volume

11

Issue

10

Pages

3354-3367

​Publication forum

70012

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

Yes

Other information

Fields of science

Electronic, automation and communications engineering, electronics; Biochemistry, cell and molecular biology; Genetics, developmental biology, physiology; Biomedicine

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publication country

United States

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1021/acssynbio.2c00259

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes