Cross-sectional associations between cardiorespiratory fitness and NMR-derived metabolic biomarkers in children : the PANIC study
Year of publication
2022
Authors
Haapala, Eero A.; Leppänen, Marja H.; Lehti, Maarit; Lintu, Niina; Tompuri, Tuomo; Viitasalo, Anna; Schwab, Ursula; Lakka, Timo A.
Abstract
Objective: Cardiorespiratory fitness has been inversely associated with cardiovascular risk across the lifespan. Some studies in adults suggest that higher cardiorespiratory fitness is associated with cardioprotective metabolite profile, but the evidence in children is lacking. Therefore, we investigated the cross-sectional association of cardiorespiratory fitness with serum nuclear magnetic resonance derived metabolic biomarkers in children. Methods: A population sample of 450 children aged 6–8 years was examined. Cardiorespiratory fitness was assessed by a maximal exercise test on a cycle ergometer and quantified as maximal power output normalised for lean body mass assessed by dual-energy X-ray absorbtiometry. Serum metabolites were assessed using a high throughput nuclear magnetic resonance platform. The data were analysed using linear regression analyses adjusted for age and sex and subsequently for body fat percentage (BF%) assessed by DXA. Results: Cardiorespiratory fitness was directly associated with high density lipoprotein (HDL) cholesterol (β=0.138, 95% CI=0.042 to 0.135, p=0.005), average HDL particle diameter (β=0.102, 95% CI=0.004 to 0.199, p=0.041), and the concentrations of extra-large HDL particles (β=0.103, 95% CI=0.006 to 0.201, p=0.038), large HDL particles (β=0.122, 95% CI=0.025 to 0.220, p=0.014), and medium HDL particles (β=0.143, 95% CI=0.047 to 0.239, p=0.004) after adjustment for age and sex. Higher cardiorespiratory fitness was also associated with higher concentrations of ApoA1 (β=0.145, 95% CI=0.047 to 0.242, p=0.003), glutamine (β=0.161, 95% CI=0.064 to 0.257, p=0.001), and phenylalanine (β=0.187, 95% CI=0.091 to 0.283, p<0.001). However, only the direct associations of cardiorespiratory fitness with the concentrations of HDL cholesterol (β=0.114, 95% CI=0.018 to 0.210, p=0.021), medium HDL particles (β=0.126, 95% CI=0.030 to 0.223, p=0.010), ApoA1 (β=0.126, 95% CI=0.030 to 0.223, p=0.011), glutamine (β=0.147, 95% CI=0.050 to 0.224, p=0.003), and phenylalanine (β=0.217, 95% CI=0.122 to 0.311, p<0.001) remained statistically significant after further adjustment for BF%. Conclusions: Higher cardiorespiratory fitness was associated with a cardioprotective biomarker profile in children. Most associations were independent of BF% suggesting that the differences in serum metabolites between children are driven by cardiorespiratory fitness and not adiposity.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
13
Article number
954418
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
Other information
Fields of science
Sport and fitness sciences; Biomedicine
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
Switzerland
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.3389/fendo.2022.954418
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes