Transformers for cardiac patient mortality risk prediction from heterogeneous electronic health records
Year of publication
2023
Authors
Antikainen, Emmi; Linnosmaa, Joonas; Umer, Adil; Oksala, Niku; Eskola, Markku; van Gils, Mark; Hernesniemi, Jussi; Gabbouj, Moncef;
Abstract
With over 17 million annual deaths, cardiovascular diseases (CVDs) dominate the cause of death statistics. CVDs can deteriorate the quality of life drastically and even cause sudden death, all the while inducing massive healthcare costs. This work studied state-of-the-art deep learning techniques to predict increased risk of death in CVD patients, building on the electronic health records (EHR) of over 23,000 cardiac patients. Taking into account the usefulness of the prediction for chronic disease patients, a prediction period of six months was selected. Two major transformer models that rely on learning bidirectional dependencies in sequential data, BERT and XLNet, were trained and compared. To our knowledge, the presented work is the first to apply XLNet on EHR data to predict mortality. The patient histories were formulated as time series consisting of varying types of clinical events, thus enabling the model to learn increasingly complex temporal dependencies. BERT and XLNet achieved an average area under the receiver operating characteristic curve (AUC) of 75.5% and 76.0%, respectively. XLNet surpassed BERT in recall by 9.8%, suggesting that it captures more positive cases than BERT, which is the main focus of recent research on EHRs and transformers.
Show moreOrganizations and authors
Tampere University
Antikainen Emmi
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Volume
13
Issue
1
Article number
3517
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
License of the publisher’s version
CC BY
Self-archived
Yes
License of the self-archived publication
CC BY
Article processing fee (EUR)
2145
Other information
Fields of science
Computer and information sciences; Biomedicine; General medicine, internal medicine and other clinical medicine; Health care science
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1038/s41598-023-30657-1
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes