Loss of species and genetic diversity during colonization : Insights from acanthocephalan parasites in northern European seals
Year of publication
2023
Authors
Sromek, Ludmila; Ylinen, Eeva; Kunnasranta, Mervi; Maduna, Simo N.; Sinisalo, Tuula; Michell, Craig T.; Kovacs, Kit M.; Lydersen, Christian; Ieshko, Evgeny; Andrievskaya, Elena; Alexeev, Vyacheslav; Leidenberger, Sonja; Hagen, Snorre B.; Nyman, Tommi
Abstract
Studies on host–parasite systems that have experienced distributional shifts, range fragmentation, and population declines in the past can provide information regarding how parasite community richness and genetic diversity will change as a result of anthropogenic environmental changes in the future. Here, we studied how sequential postglacial colonization, shifts in habitat, and reduced host population sizes have influenced species richness and genetic diversity of Corynosoma (Acanthocephala: Polymorphidae) parasites in northern European marine, brackish, and freshwater seal populations. We collected Corynosoma population samples from Arctic, Baltic, Ladoga, and Saimaa ringed seal subspecies and Baltic gray seals, and then applied COI barcoding and triple-enzyme restriction-site associated DNA (3RAD) sequencing to delimit species, clarify their distributions and community structures, and elucidate patterns of intraspecific gene flow and genetic diversity. Our results showed that Corynosoma species diversity reflected host colonization histories and population sizes, with four species being present in the Arctic, three in the Baltic Sea, two in Lake Ladoga, and only one in Lake Saimaa. We found statistically significant population-genetic differentiation within all three Corynosoma species that occur in more than one seal (sub)species. Genetic diversity tended to be high in Corynosoma populations originating from Arctic ringed seals and low in the landlocked populations. Our results indicate that acanthocephalan communities in landlocked seal populations are impoverished with respect to both species and intraspecific genetic diversity. Interestingly, the loss of genetic diversity within Corynosoma species seems to have been less drastic than in their seal hosts, possibly due to their large local effective population sizes resulting from high infection intensities and effective intra-host population mixing. Our study highlights the utility of genomic methods in investigations of community composition and genetic diversity of understudied parasites.
Show moreOrganizations and authors
Natural Resources Institute Finland
Kunnasranta Mervi
University of Jyväskylä
Sinisalo Tuula
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal
Publisher
Volume
13
Issue
10
Article number
e10608
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
License of the publisher’s version
CC BY
Self-archived
Yes
Other information
Fields of science
Ecology, evolutionary biology; Genetics, developmental biology, physiology
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
United States
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1002/ece3.10608
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes