undefined

Effect of Secondary Heat Treatment after a Washing on the Electrochemical Performance of Co-Free LiNi0.975Al0.025O2 Cathodes for Li-Ion Batteries

Year of publication

2024

Authors

Välikangas, Juho; Laine, Petteri; Hu, Tao; Tynjälä, Pekka; Selent, Marcin; Molaiyan, Palanivel; Jürgen, Kahr; Lassi, Ulla

Abstract

The steadily growing electric vehicle market is a driving force in low-cost, high-energy-density lithium-ion battery development. To meet this demand, LiNi0.975Al0.025O2 (LNA), a high-energy-density and cobalt-free cathode material, has been developed using a low-cost and efficient co-precipitation and lithiation process. This article explores how further processing (i.e., washing residual lithium from the secondary particle surface and applying a secondary heat treatment at 650 °C) changes the chemical environment of the surface and the electrochemical performance of the LNA cathode material. After washing, a nonconductive nickel oxide (NiO) phase is formed on the surface, decreasing the initial capacity in electrochemical tests, and suppressing high-voltage (H2) to (H3) phase transition results in enhanced cycle properties. Furthermore, the secondary heat treatment re-lithiates surface NiO back to LNAand increases the initial capacity with enhanced cycle properties. Electrochemical tests are performed with the cells without tap charge to suppress the H2 to H3 phase transition. Results reveal that avoiding charging cells at a high voltage for a long time dramatically improves LNA's cycle life. In addition, the gas analysis tests performed during charge and discharge to reveal how the amount of residual lithium compounds on the surface affects gas formation are studied.
Show more

Organizations and authors

University of Oulu

Lassi Ulla Orcid -palvelun logo

Välikangas Juho

Tynjälä Pekka

Laine Petteri

Hu Tao

Selent Marcin

University of Jyväskylä

Tynjälä Pekka

Lassi Ulla

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Journal

Small

Issue

4

Article number

2305349

​Publication forum

67199

​Publication forum level

3

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

Yes

License of the self-archived publication

CC BY

Other information

Fields of science

Chemical sciences

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publication country

Germany

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

Yes

DOI

10.1002/smll.202305349

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes