Tribological behavior and biocompatibility of novel Nickel-Free stainless steel manufactured via laser powder bed fusion for biomedical applications
Year of publication
2024
Authors
Nayak, Chinmayee ; Anand, Abhinav; Kamboj, Nikhil; Kantonen, Tuomas; Kajander, Karoliina; Tupala, Vilma; Heino, Terhi J.; Cherukuri, Rahul; Mohanty, Gaurav; Capek, Jan ; Polatidis, Efthymios; Goel, Sneha; Salminen, Antti; Ganvir, Ashish
Abstract
<p>Due to the risk of releasing carcinogenic nickel ions from conventional 316L stainless steel under a corrosive human body environment, a new variant of steel termed nickel-free stainless steel (NiFSS) has been investigated. The present study investigates the tribological properties and biocompatibility of NiFSS manufactured via laser powder bed fusion (PBF-LB/M). The ferritic NiFSS exhibited significantly lower coefficient of friction (0.08 to 0.28) and wear rate (1.60 × 10<sup>-6</sup> mm<sup>3</sup>/Nm to 6.60 × 10<sup>-6</sup> mm<sup>3</sup>/Nm) compared to reported values for austenitic 316L SS, under both dry and simulated body fluid (SBF) conditions and various sliding geometries. This improvement is attributed to the superior hardness (3.394 ± 0.1340 GPa) and elastic modulus (238 ± 9.0797 GPa) of NiFSS. To assess the biocompatibility, the viability of mouse pre-osteoblastic MC3T3-E1 cells was evaluated with an Alamar Blue assay when the cells were cultured on top of PBF-LB/M built NiFSS and 316L SS samples. The results indicated that even though cell growth was most optimal on regular cell culture plastic, cell viability was better maintained on PBF-LB/M built NiFSS compared to 316L SS. Therefore, the results of the present study propose that PBF-LB/M fabricated NiFSS holds promise for application in biomedical devices for joint arthroplasty.</p>
Show moreOrganizations and authors
University of Turku
Kajander Karoliina
Heino Terhi
ANAND ABHINAV
Salminen Antti
Ganvir Ashish
Nayak Chinmayee
Kantonen Johannes
Kamboj Nikhil
Goel Sneha
VTT Technical Research Centre of Finland Ltd
Goel Sneha
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Volume
242
Article number
113013
ISSN
Publication forum
Publication forum level
3
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
License of the publisher’s version
CC BY
Self-archived
Yes
Other information
Fields of science
Mechanical engineering; Materials engineering; Environmental engineering; Biomedicine
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.matdes.2024.113013
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes