Stationary subspace analysis based on second-order statistics
Year of publication
2024
Authors
Flumian, Lea; Matilainen, Markus; Nordhausen, Klaus; Taskinen, Sara
Abstract
In stationary subspace analysis (SSA) one assumes that the observable p-variate time series is a linear mixture of a k-variate nonstationary time series and a (p – k)-variate stationary time series. The aim is then to estimate the unmixing matrix which transforms the observed multivariate time series onto stationary and nonstationary components. In the classical approach multivariate data are projected onto stationary and nonstationary subspaces by minimizing a Kullback–Leibler divergence between Gaussian distributions, and the method only detects nonstationarities in the first two moments. In this paper we consider SSA in a more general multivariate time series setting and propose SSA methods which are able to detect nonstationarities in mean, variance and autocorrelation, or in all of them. Simulation studies illustrate the performances of proposed methods, and it is shown that especially the method that detects all three types of nonstationarities performs well in various time series settings. The paper is concluded with an illustrative example.
Show moreOrganizations and authors
University of Turku
Matilainen Markus
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Publisher
Volume
436
Article number
115379
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Statistics and probability
Keywords
[object Object],[object Object],[object Object]
Publication country
Netherlands
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.cam.2023.115379
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes