Contact formulations for analysis of micropolar media with finite continuum beam elements
Year of publication
2024
Authors
Obrezkov Leonid; Bozorgmehri Babak; Kouhia Reijo; Matikainen Marko
Abstract
Microscale beam-like structures are standard components of micromechanical systems in many devices. However, the small dimensionality affects their deformation characteristics and leads to misinterpretations of the results. Presenting such size dependency is possible with advanced continuum descriptions via introducing additional variables compared to the classical one. Hence, the problems where contact occurs require the readjustment of boundary conditions considering these extra parameters. That burdens the already challenging task of contact problem calculations and restricts most demonstration examples to two-dimensional problems and geometrical linearity. The resolution of the imposed restrictions within finite element modeling further emphasizes the usage of advanced media in design and facilitates its application to various problems, which is the aim of this paper. The delivery of that task is as follows. Firstly, we present the kinematics and material descriptions for the micropolar media. The authors propose to use a newly developed continuum-based micropolar beam formulation to avoid an overwhelming computational burden and, at the same time, deal with nonlinear stress–strain relations. Secondly, the work develops a contact approach within the micropolar theory from two-dimensional to three-dimensional elasticity, although the contact is considered frictionless. Finally, it compares two existing contact formulations, including the developed one, for the contact beam problems, using the examples of two collinear sliding beams’ bending.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Volume
299
Article number
112880
ISSN
Publication forum
Publication forum level
2
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
License of the publisher’s version
CC BY
Self-archived
Yes
License of the self-archived publication
CC BY
Other information
Fields of science
Civil and construction engineering; Mechanical engineering
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1016/j.ijsolstr.2024.112880
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes