N-Heteroaryl Carbamates from Carbon Dioxide via Chemoselective Superbase Catalysis : Substrate Scope and Mechanistic Investigation
Year of publication
2023
Authors
Mannisto, Jere K.; Pavlovic, Ljiljana; Heikkinen, Johannes; Tiainen, Tony; Sahari, Aleksi; Maier, Norbert M.; Rissanen, Kari; Nieger, Martin; Hopmann, Kathrin H.; Repo, Timo
Abstract
We report a mild superbase-catalyzed and nitrogen-selective carboxylation of N-heteroaryls, with subsequent alkylation enabling the synthesis of drug-like O-alkyl carbamates in good yields (av. 86%). Our findings suggest a partial revision of the current mechanistic understanding as superbases upon mixing with indoles and azoles generally form uncharged hydrogen-bonded complexes and not ionic salts as previously proposed. However, when these complexes are exposed to CO2, carbamate salts are formed. These can be categorized into two subgroups, stable and fluxional carbamate salts, where the latter undergo fast and reversible CO2 exchange, thus being poor substrates for alkylation. Experiments and DFT calculations indicate that the fluxional behavior is primarily caused by substrate-specific electronic destabilization effects. The degree of destabilization depends on the number of nitrogen atoms within and the functional group substitution on the heterocyclic ring structures. Fluxionality can be compensated for by the use of lower temperatures and/or higher CO2 pressures as both measures stabilize the carbamate salts sufficiently, enabling subsequent alkylation.
Show moreOrganizations and authors
University of Helsinki
Sahari Aleksi
Mannisto Jere K.
Heikkinen Johannes
Nieger Martin
Maier Norbert M.
Repo Timo
Tiainen Tony
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal
Parent publication name
Publisher
Volume
13
Pages
11509-11521
ISSN
Publication forum
Publication forum level
3
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Chemical sciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
United States
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1021/acscatal.3c02362
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes