undefined

N-Heteroaryl Carbamates from Carbon Dioxide via Chemoselective Superbase Catalysis : Substrate Scope and Mechanistic Investigation

Year of publication

2023

Authors

Mannisto, Jere K.; Pavlovic, Ljiljana; Heikkinen, Johannes; Tiainen, Tony; Sahari, Aleksi; Maier, Norbert M.; Rissanen, Kari; Nieger, Martin; Hopmann, Kathrin H.; Repo, Timo

Abstract

We report a mild superbase-catalyzed and nitrogen-selective carboxylation of N-heteroaryls, with subsequent alkylation enabling the synthesis of drug-like O-alkyl carbamates in good yields (av. 86%). Our findings suggest a partial revision of the current mechanistic understanding as superbases upon mixing with indoles and azoles generally form uncharged hydrogen-bonded complexes and not ionic salts as previously proposed. However, when these complexes are exposed to CO2, carbamate salts are formed. These can be categorized into two subgroups, stable and fluxional carbamate salts, where the latter undergo fast and reversible CO2 exchange, thus being poor substrates for alkylation. Experiments and DFT calculations indicate that the fluxional behavior is primarily caused by substrate-specific electronic destabilization effects. The degree of destabilization depends on the number of nitrogen atoms within and the functional group substitution on the heterocyclic ring structures. Fluxionality can be compensated for by the use of lower temperatures and/or higher CO2 pressures as both measures stabilize the carbamate salts sufficiently, enabling subsequent alkylation.
Show more

Organizations and authors

University of Helsinki

Sahari Aleksi

Mannisto Jere K.

Heikkinen Johannes

Nieger Martin

Maier Norbert M.

Repo Timo

Tiainen Tony

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Parent publication name

ACS catalysis

Volume

13

Pages

11509-11521

​Publication forum

70011

​Publication forum level

3

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Chemical sciences

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publication country

United States

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1021/acscatal.3c02362

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes