Experimental evidence that root-associated fungi improve plant growth at high altitude
Year of publication
2024
Authors
Burg, Skylar; Ovaskainen, Otso; Furneaux, Brendan; Ivanova, Natalia; Abrahamyan, Arusyak; Niittynen, Pekka; Somervuo, Panu; Abrego, Nerea
Abstract
Unravelling how species communities change along environmental gradients requires a dual understanding: the direct responses of the species to their abiotic surroundings and the indirect variation of these responses through biotic interactions. Here, we focus on the interactive relationships between plants and their symbiotic root-associated fungi (RAF) along stressful abiotic gradients. We investigate whether variations in RAF community composition along altitudinal gradients influence plant growth at high altitudes, where both plants and fungi face harsher abiotic conditions. We established a translocation experiment between pairs of Bistorta vivipara populations across altitudinal gradients. To separate the impact of shifting fungal communities from the overall influence of changing abiotic conditions, we used a root barrier to prevent new colonization by RAF following translocation. To characterize the RAF communities, we applied DNA barcoding to the root samples. Through the utilization of joint species distribution modelling, we assessed the relationship between changes in plant functional traits resulting from experimental treatments and the corresponding changes in the RAF communities. Our findings indicate that RAF communities influence plant responses to stressful abiotic conditions. Plants translocated from low to high altitudes grew more when they were able to associate with the resident high-altitude RAF compared to those plants that were not allowed to associate with the resident RAF. We conclude that interactions with RAF impact how plants respond to stressful abiotic conditions. Our results provide experimental support that interactions with RAF improve plant stress tolerance to altitudinal stressors such as colder temperatures and less nutrient availability.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Parent publication name
Publisher
Volume
33
Issue
12
Article number
e17376
ISSN
Publication forum
Publication forum level
3
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Ecology, evolutionary biology; Plant biology, microbiology, virology
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
United Kingdom
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
Yes
DOI
10.1111/mec.17376
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes