Higher thermal plasticity in flowering phenology increases flowering output
Year of publication
2024
Authors
Kotilainen, Aino Kaarina; Mattila, Anniina L. K.; Møller, Charlotte; Koivusaari, Susanna Hilda Maria; Hyvärinen, Marko; Hällfors, Maria
Abstract
Ongoing climate change poses an increasing threat to biodiversity. To avoid decline or extinction, species need to either adjust or adapt to new environmental conditions or track their climatic niches across space. In sessile organisms such as plants, phenotypic plasticity can help maintain fitness in variable and even novel environmental conditions and is therefore likely to play an important role in allowing them to survive climate change, particularly in the short term. Understanding a species' response to rising temperature is crucial for planning well-targeted and cost-effective conservation measures. We sampled seeds of three Hypericum species (H. maculatum, H. montanum, and H. perforatum), from a total of 23 populations originating from different parts of their native distribution areas in Europe. We grew them under four different temperature regimes in a greenhouse to simulate current and predicted future climatic conditions in the distribution areas. We measured flowering start, flower count, and subsequent seed weight, allowing us to study variations in the thermal plasticity of flowering phenology and its relation to fitness. Our results show that individuals flowered earlier with increasing temperature, while the degree of phenological plasticity varied among species. More specifically, the plasticity of H. maculatum varied depending on population origin, with individuals from the leading range edge being less plastic. Importantly, we show a positive relationship between higher plasticity and increased flower production, indicating adaptive phenological plasticity. The observed connection between plasticity and fitness supports the idea that plasticity may be adaptive. This study underlines the need for information on plasticity for predicting species' potential to thrive under global change and the need for studies on whether higher phenotypic plasticity is currently being selected as natural populations experience a rapidly changing climate.
Show moreOrganizations and authors
University of Helsinki
Kotilainen Aino Kaarina
Mattila Anniina L. K.
Møller Charlotte
Hällfors Maria
Hyvärinen Marko
Koivusaari Susanna Hilda Maria
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Parent publication name
Volume
14
Issue
7
Article number
e11657
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
License of the self-archived publication
CC BY
Other information
Fields of science
Ecology, evolutionary biology; Plant biology, microbiology, virology
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
United States
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1002/ece3.11657
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes