Does a polymer film due to Rayleigh-instability affect interfacial properties measured by microbond test?
Year of publication
2024
Authors
Dsouza, Royson; Kakkonen, Markus; Prapavesis, Alexandros; Sarlin, Essi; Antunes, Paulo; Van Vuure, Aart W.; Kallio, Pasi; Kanerva, Mikko
Abstract
The microbond (MB) test, which is primarily used to characterise the interface of fibrous composites, requires a large number of droplets to be tested and analysed in order to make a reliable conclusion about the fibre–droplet interface. The conventional method of depositing single droplets on fibre and performing the MB test can be improved by depositing multiple droplets using the Rayleigh plateau instability phenomenon (an additional film is formed between the droplets). Although the latter method has significant advantages and higher statistical reliability, the role of the additional film affecting MB test results has not been investigated. In this work, both methods are experimentally evaluated for glass and flax fibres with two different resin systems and the interfacial constants, namely critical stress for damage initiation and critical energy release rate, are validated by finite element (FE) models. The study reveals that the thickness of the additional film shows incorrect interfacial shear strength (IFSS) when determined from simple force-displacement data ((Formula presented.) 18% increase for the fibre-droplet system in this study). The FE models confirm that the damage onset at the interface occurs at a higher force with this method, but the interfacial strength constants remain the same as with the conventional method.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Volume
32
Issue
2
Pages
107-133
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
License of the publisher’s version
CC BY
Self-archived
Yes
License of the self-archived publication
CC BY
Other information
Fields of science
Materials engineering
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
Yes
DOI
10.1080/09276440.2024.2379637
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes