undefined

Effect of lithium ions on the catalytic efficiency of calcium oxide as a nanocatalyst for the transesterification of lard oil

Year of publication

2019

Authors

Ambat, Indu; Srivastava, Varsha; Haapaniemi, Esa; Sillanpää, Mika

Abstract

The present work encompasses the effect of Li+ ions on CaO nanoparticles for the transesterification of lard oil. The modification of CaO nanoparticles was achieved by the impregnation of different molar ratios of lithium hydroxide. Later, each catalyst was screened for the catalytic conversion of lard oil to a fatty acid methyl ester (FAME). The nanocatalyst CaO–0.5LiOH (1 : 0.5 molar ratio) showed the best conversion rate for FAME. The synthesized nanocatalyst was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) analysis, and Hammett indicators for the basicity test. The obtained FAME was analyzed by gas chromatography with mass spectrometry (GC-MS) and 1H and 13C nuclear magnetic resonance (NMR). The effect of optimum reaction parameters such as catalyst weight percentage, oil-to-methanol ratio, reaction time, reaction temperature, and reusability of the catalyst for the transesterification reaction was analyzed by 1H NMR. The maximum FAME yield of 97.33% was obtained with 4 wt% catalyst amount and 1 : 6 oil-to-methanol ratio at 65 °C in 120 minutes. The physical properties of the synthesized FAME were also determined.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

3

Issue

9

Pages

2464-2474

​Publication forum

86261

​Publication forum level

1

Open access

Open access in the publisher’s service

No

Self-archived

Yes

Other information

Fields of science

Chemical sciences; Chemical engineering; Environmental engineering

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publication country

United Kingdom

Internationality of the publisher

International

Language

English

International co-publication

No

Co-publication with a company

No

DOI

10.1039/C9SE00210C

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes