Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images
Year of publication
2020
Authors
Cronin, Neil J.; Finni, Taija; Seynnes, Olivier
Abstract
Background and Objective Deep learning approaches are common in image processing, but often rely on supervised learning, which requires a large volume of training images, usually accompanied by hand-crafted labels. As labelled data are often not available, it would be desirable to develop methods that allow such data to be compiled automatically. In this study, we used a Generative Adversarial Network (GAN) to generate realistic B-mode musculoskeletal ultrasound images, and tested the suitability of two automated labelling approaches. Methods We used a model including two GANs each trained to transfer an image from one domain to another. The two inputs were a set of 100 longitudinal images of the gastrocnemius medialis muscle, and a set of 100 synthetic segmented masks that featured two aponeuroses and a random number of ‘fascicles’. The model output a set of synthetic ultrasound images and an automated segmentation of each real input image. This automated segmentation process was one of the two approaches we assessed. The second approach involved synthesising ultrasound images and then feeding these images into an ImageJ/Fiji-based automated algorithm, to determine whether it could detect the aponeuroses and muscle fascicles. Results Histogram distributions were similar between real and synthetic images, but synthetic images displayed less variation between samples and a narrower range. Mean entropy values were statistically similar (real: 6.97, synthetic: 7.03; p = 0.218), but the range was much narrower for synthetic images (6.91 – 7.11 versus 6.30 – 7.62). When comparing GAN-derived and manually labelled segmentations, intersection-over-union values- denoting the degree of overlap between aponeurosis labels- varied between 0.0280 – 0.612 (mean ± SD: 0.312 ± 0.159), and pennation angles were higher for the GAN-derived segmentations (25.1° vs. 19.3 °; p < 0.001). For the second segmentation approach, the algorithm generally performed equally well on synthetic and real images, yielding pennation angles within the physiological range (13.8-20°). Conclusions We used a GAN to generate realistic B-mode ultrasound images, and extracted muscle architectural parameters from these images automatically. This approach could enable generation of large labelled datasets for image segmentation tasks, and may also be useful for data sharing. Automatic generation and labelling of ultrasound images minimises user input and overcomes several limitations associated with manual analysis.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
196
Article number
105583
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Article processing fee (EUR)
1094
Year of payment for the open publication fee
2020
Other information
Fields of science
Medical engineering; Sport and fitness sciences
Keywords
[object Object],[object Object],[object Object],[object Object]
Publication country
Ireland
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.cmpb.2020.105583
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes