undefined

Chiral Instabilities and the Onset of Chiral Turbulence in QED Plasmas

Year of publication

2020

Authors

Mace, Mark; Mueller, Niklas; Schlichting, Soeren; Sharma, Sayantan

Abstract

We present a first principles study of chiral plasma instabilities and the onset of chiral turbulence in QED plasmas with strong gauge matter interaction (e2Nf=64), far from equilibrium. By performing classical-statistical lattice simulations of the microscopic theory, we show that the generation of strong helical magnetic fields from a helicity imbalance in the fermion sector proceeds via three distinct phases. During the initial linear instability regime the helicity imbalance of the fermion sector causes an exponential growth (damping) of magnetic field modes with right- (left-) handed polarization, for which we extract the characteristic growth (damping) rates. Secondary growth of unstable modes accelerates the helicity transfer from fermions to gauge fields and ultimately leads to the emergence of a self-similar scaling regime characteristic of a decaying turbulence, where magnetic helicity is efficiently transferred to macroscopic length scales. Within this turbulent regime, the evolution of magnetic helicity spectrum can be described by an infrared power spectrum with spectral exponent κ=10.2±0.5 and dynamical scaling exponents α=1.14±0.50 and β=0.37±0.13.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

124

Issue

19

Article number

191604

​Publication forum

65028

​Publication forum level

3

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Physical sciences

Keywords

[object Object],[object Object],[object Object]

Publication country

United States

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1103/PhysRevLett.124.191604

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes