Numerical study on the limit of quasi-static approximation for plasmonic nanosphere
Year of publication
2020
Authors
Dutta, Arpan; Tiainen, Ville; Toppari, Jussi
Abstract
Plasmonic nanospheres are often employed as resonant substrates in many nanophotonic applications, like in enhanced spectroscopy, near-field microscopy, photovoltaics, and sensing. Accurate calculation and tuning of optical responses of such nanospheres are essential to achieve optimal performance. Mie theory is widely used to calculate optical properties of spherical particles. Although, an approximated version of Mie approach, the quasi-static approximation (QSA) can also be used to determine the very same properties of those spheres with a lot simpler formulations. In this work, we report our numerical study on the limit and accuracy of QSA with respect to the rigorous Mie approach. We calculated scattering, absorption and extinction spectra of silver and gold nanospheres in air with varying sizes using both QSA and Mie theory. Then, we extracted spectral positions of the resonance peaks from their calculated optical responses and defined the error present in QSA as the difference between the spectral positions of the resonance peaks calculated by QSA and Mie method. Our error analysis reveals that QSA approach yields nonlinear increment in error with linear increment in size of the nanosphere and that the amount of error is significantly less in the case of gold spheres compared to the silver ones. We also provide a polynomial-fitted error function that resembles the qualitative trend in error.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Conference
Article type
Other article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A4 Article in conference proceedingsPublication channel information
Journal/Series
Parent publication name
ICC-2019 : 3rd International Conference on Condensed Matter and Applied Physics
Publisher
Article number
050012
ISSN
ISBN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
No
Self-archived
Yes
Other information
Fields of science
Physical sciences
Keywords
[object Object],[object Object],[object Object],[object Object]
Publication country
United States
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1063/5.0001102
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes