Increased sulfate availability in saline water promotes hydrogen sulfide production in fish organic waste
Year of publication
2020
Authors
Letelier-Gordo, Carlos O.; Aalto, Sanni L.; Suurnäkki, Suvi; Pedersen, Per Bovbjerg
Abstract
The risk of hydrogen sulfide (H2S) production can be a challenge in marine land-based recirculating aquaculture systems (RAS). Hydrogen sulfide is a toxic gas that can cause massive fish mortality even at low concentrations, and in addition, serious odour problems in the surroundings. It is a bacterial by-product originating from the degradation of organic matter in sulfur-rich waters such as marine waters. In order to hinder H2S production in marine land-based RAS, more information on the H2S production conditions and the associated microbiology is needed. In this study, the production of H2S from rainbow trout (Oncorhynchus mykiss) organic waste was examined using a novel H2S measurement method under a range of salinities (0, 5, 10, 15, 25 and 35 g/L) in anaerobic mixed reactors, and the microbial communities as well as abundance of sulfate reducing bacteria (SRB) were characterized. The maximum H2S concentration increased from 23.1 ± 8.2 mg H2S/L at 0 g/L salinity to 153.9 ± 34.1 mg H2S/L at 35 g/L salinity. Similarly, the H2S production rate increased from 5.6 ± 0.2 at 0 g/L salinity to 26.4 ± 12.7 mg of H2S produced per day at 35 g/L salinity. The highest H2S production was recorded after increased availability of volatile fatty acids, which were produced by fermentative bacteria from phyla Firmicutes and Bacteroidetes that dominated the microbial communities after day 5. The traditional sulfate reducing bacteria (SRB) were found only at 0 and 5 g/L salinity, while at higher salinities, H2S production was carried out by novel unquantifiable SRB. The results demonstrate that H2S can be a pronounced problem in marine RAS, although it can be controlled through preventing anaerobic conditions within the system.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal
Publisher
Volume
89
Pages
102062
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
No
Self-archived
Yes
Other information
Fields of science
Environmental sciences
Keywords
[object Object],[object Object],[object Object],[object Object]
Publication country
Netherlands
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.aquaeng.2020.102062
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes