undefined

Group analysis of ongoing EEG data based on fast double-coupled nonnegative tensor decomposition

Year of publication

2020

Authors

Wang, Xiulin; Liu, Wenya; Toiviainen, Petri; Ristaniemi, Tapani; Cong, Fengyu

Abstract

Background Ongoing EEG data are recorded as mixtures of stimulus-elicited EEG, spontaneous EEG and noises, which require advanced signal processing techniques for separation and analysis. Existing methods cannot simultaneously consider common and individual characteristics among/within subjects when extracting stimulus-elicited brain activities from ongoing EEG elicited by 512-s long modern tango music. New method Aiming to discover the commonly music-elicited brain activities among subjects, we provide a comprehensive framework based on fast double-coupled nonnegative tensor decomposition (FDC-NTD) algorithm. The proposed algorithm with a generalized model is capable of simultaneously decomposing EEG tensors into common and individual components. Results With the proposed framework, the brain activities can be effectively extracted and sorted into the clusters of interest. The proposed algorithm based on the generalized model achieved higher fittings and stronger robustness. In addition to the distribution of centro-parietal and occipito-parietal regions with theta and alpha oscillations, the music-elicited brain activities were also located in the frontal region and distributed in the 4–11 Hz band. Comparison with existing method(s) The present study, by providing a solution of how to separate common stimulus-elicited brain activities using coupled tensor decomposition, has shed new light on the processing and analysis of ongoing EEG data in multi-subject level. It can also reveal more links between brain responses and the continuous musical stimulus. Conclusions The proposed framework based on coupled tensor decomposition can be successfully applied to group analysis of ongoing EEG data, as it can be reliably inferred that those brain activities we obtained are associated with musical stimulus.
Show more

Organizations and authors

University of Jyväskylä

Cong Fengyu

Toiviainen Petri Orcid -palvelun logo

Ristaniemi Tapani Orcid -palvelun logo

Liu Wenya

Wang Xiulin

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Publisher

Elsevier BV

Volume

330

Article number

108502

​Publication forum

61155

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Computer and information sciences; Neurosciences; Theatre, dance, music, other performing arts

Keywords

[object Object],[object Object],[object Object],[object Object]

Publication country

Netherlands

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.jneumeth.2019.108502

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes