undefined

Design and preparation of core-shell structured magnetic graphene oxide@MIL-101(Fe) : Photocatalysis under shell to remove diazinon and atrazine pesticides

Year of publication

2020

Authors

Fakhri, Hanieh; Farzadkia, Mahdi; Boukherroub, Rabah; Srivastava, Varsha; Sillanpää, Mika

Abstract

A magnetically separable support with core-shell morphology comprising amine-functionalized Fe3O4 wrapped with graphene oxide (AFG) was successfully prepared and used to support MIL-101(Fe). The ternary AFG@MIL-101(Fe) composite was investigated as a photo-Fenton catalyst for the degradation of recalcitrant diazinon (DIZ) and atrazine (ATZ) pesticides. After 105 min visible light irradiation, the AFG@30MIL-101(Fe) photocatalyst achieved 100 ± 1% and 81 ± 1% photocatalytic degradation efficiency for DIZ and ATZ pollutants, respectively. The recorded data indicated superior photocatalytic ability of the nanocomposite as compared to AF@30MIL-101(Fe) and MIL-101(Fe) photocatalysts for the removal of both pollutants. Total Organic Carbon (TOC) analysis revealed 84 ± 0.5% and 62 ± 0.5% mineralization for DIZ and ATZ, respectively. The obtained results of characterization and also photocatalytic behavior suggest enhanced conversion between Fe2+/Fe3+ as well as fast electron transfer through interlayers of graphene oxide in this unique core-shell structure. After assaying the adsorption performance of photocatalyst, it was found that ATZ adsorption was more pronounced than DIZ. Furthermore, radical quenching tests revealed radical dotOH radicals were the main oxidizing players in this process even though the contribution of other species cannot be ruled out. It is noteworthy that magnetic stability was well preserved after 4 consecutive photocatalytic cycles, suggesting that this work can be a guideline to prepare efficient and stable magnetic Fenton systems.
Show more

Organizations and authors

University of Jyväskylä

Srivastava Varsha

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Journal/Series

Solar Energy

Publisher

Elsevier

Volume

208

Pages

990-1000

​Publication forum

67367

​Publication forum level

2

Open access

Open access in the publisher’s service

No

Self-archived

No

Other information

Fields of science

Chemical engineering; Materials engineering; Environmental sciences

Keywords

[object Object],[object Object],[object Object]

Publication country

United Kingdom

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.solener.2020.08.050

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes