undefined

Approximation of functions over manifolds : A Moving Least-Squares approach

Year of publication

2021

Authors

Sober, Barak; Aizenbud, Yariv; Levin, David

Abstract

We present an algorithm for approximating a function defined over a d-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not require knowledge about the local geometry of the manifold or its local parameterizations. We do require, however, knowledge regarding the manifold's intrinsic dimension d. We use the Manifold Moving Least-Squares approach of Sober and Levin (2019) to reconstruct the atlas of charts and the approximation is built on top of those charts. The resulting approximant is shown to be a function defined over a neighborhood of a manifold, approximating the originally sampled manifold. In other words, given a new point, located near the manifold, the approximation can be evaluated directly on that point. We prove that our construction yields a smooth function, and in case of noiseless samples the approximation order is O(hm+1), where h is a local density of sample parameter (i.e., the fill distance) and m is the degree of a local polynomial approximation, used in our algorithm. In addition, the proposed algorithm has linear time complexity with respect to the ambient space's dimension. Thus, we are able to avoid the computational complexity, commonly encountered in high dimensional approximations, without having to perform non-linear dimension reduction, which inevitably introduces distortions to the geometry of the data. Additionally, we show numerically that our approach compares favorably to some well-known approaches for regression over manifolds.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Publisher

Elsevier BV

Volume

383

Article number

113140

​Publication forum

59989

​Publication forum level

2

Open access

Open access in the publisher’s service

No

Self-archived

Yes

Other information

Fields of science

Mathematics

Keywords

[object Object],[object Object],[object Object],[object Object]

Publication country

Netherlands

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.cam.2020.113140

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes