undefined

Assessment of nonnegative matrix factorization algorithms for electroencephalography spectral analysis

Year of publication

2020

Authors

Hu, Guoqiang; Zhou, Tianyi; Luo, Siwen; Mahini, Reza; Xu, Jing; Chang, Yi; Cong, Fengyu

Abstract

Background Nonnegative matrix factorization (NMF) has been successfully used for electroencephalography (EEG) spectral analysis. Since NMF was proposed in the 1990s, many adaptive algorithms have been developed. However, the performance of their use in EEG data analysis has not been fully compared. Here, we provide a comparison of four NMF algorithms in terms of accuracy of estimation, stability (repeatability of the results) and time complexity of algorithms with simulated data. In the practical application of NMF algorithms, stability plays an important role, which was an emphasis in the comparison. A Hierarchical clustering algorithm was implemented to evaluate the stability of NMF algorithms. Results In simulation-based comprehensive analysis of fit, stability, accuracy of estimation and time complexity, hierarchical alternating least squares (HALS) low-rank NMF algorithm (lraNMF_HALS) outperformed the other three NMF algorithms. In the application of lraNMF_HALS for real resting-state EEG data analysis, stable and interpretable features were extracted. Conclusion Based on the results of assessment, our recommendation is to use lraNMF_HALS, providing the most accurate and robust estimation.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

19

Article number

61

​Publication forum

52405

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Fully open publication channel

Self-archived

Yes

Other information

Fields of science

Computer and information sciences

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object]

Publication country

United Kingdom

Internationality of the publisher

International

Language

English

International co-publication

No

Co-publication with a company

No

DOI

10.1186/s12938-020-00796-x

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes