Simultaneous Noise and Impedance Fitting to Transition-Edge Sensor Data Using Differential Evolution
Year of publication
2020
Authors
Helenius, A. P.; Puurtinen, T. A.; Kinnunen, K. M.; Maasilta, I. J.
Abstract
We discuss a robust method to simultaneously fit a complex multi-body model both to the complex impedance and the noise data for transition-edge sensors. It is based on a differential evolution (DE) algorithm, providing accurate and repeatable results with only a small increase in computational cost compared to the Levenberg–Marquardt (LM) algorithm. Test fits are made using both DE and LM methods, and the results compared with previously determined best fits, with varying initial value deviations and limit ranges for the parameters. The robustness of DE is demonstrated with successful fits even when parameter limits up to a factor of 10 from the known values were used. It is shown that the least squares fitting becomes unreliable beyond a 10% deviation from the known values.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Publisher
Volume
200
Issue
5-6
Pages
213-219
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Physical sciences; Electronic, automation and communications engineering, electronics
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
United States
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1007/s10909-020-02489-0
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes