Automatic sleep scoring : a deep learning architecture for multi-modality time series
Year of publication
2021
Authors
Yan, Rui; Li, Fan; Zhou, Dong Dong; Ristaniemi, Tapani; Cong, Fengyu
Abstract
Background: Sleep scoring is an essential but time-consuming process, and therefore automatic sleep scoring is crucial and urgent to help address the growing unmet needs for sleep research. This paper aims to develop a versatile deep-learning architecture to automate sleep scoring using raw polysomnography recordings. Method: The model adopts a linear function to address different numbers of inputs, thereby extending model applications. Two-dimensional convolution neural networks are used to learn features from multi-modality polysomnographic signals, a “squeeze and excitation” block to recalibrate channel-wise features, together with a long short-term memory module to exploit long-range contextual relation. The learnt features are finally fed to the decision layer to generate predictions for sleep stages. Result: Model performance is evaluated on three public datasets. For all tasks with different available channels, our model achieves outstanding performance not only on healthy subjects but even on patients with sleep disorders (SHHS: Acc-0.87, K-0.81; ISRUC: Acc-0.86, K-0.82; Sleep-EDF: Acc-0.86, K-0.81). The highest classification accuracy is achieved by a fusion of multiple polysomnographic signals. Comparison: Compared to state-of-the-art methods that use the same dataset, the proposed model achieves a comparable or better performance, and exhibits low computational cost. Conclusions: The model demonstrates its transferability among different datasets, without changing model architecture or hyper-parameters across tasks. Good model transferability promotes the application of transfer learning on small group studies with mismatched channels. Due to demonstrated availability and versatility, the proposed method can be integrated with diverse polysomnography systems, thereby facilitating sleep monitoring in clinical or routine care.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
348
Article number
108971
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
No
Self-archived
Yes
Other information
Fields of science
Computer and information sciences; Neurosciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
Netherlands
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.jneumeth.2020.108971
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes