On the usage of joint diagonalization in multivariate statistics
Year of publication
2022
Authors
Nordhausen, Klaus; Ruiz-Gazen, Anne
Abstract
Scatter matrices generalize the covariance matrix and are useful in many multivariate data analysis methods, including well-known principal component analysis (PCA), which is based on the diagonalization of the covariance matrix. The simultaneous diagonalization of two or more scatter matrices goes beyond PCA and is used more and more often. In this paper, we offer an overview of many methods that are based on a joint diagonalization. These methods range from the unsupervised context with invariant coordinate selection and blind source separation, which includes independent component analysis, to the supervised context with discriminant analysis and sliced inverse regression. They also encompass methods that handle dependent data such as time series or spatial data.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal
Publisher
Volume
188
Article number
104844
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Statistics and probability
Keywords
[object Object],[object Object],[object Object]
Publication country
United States
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.jmva.2021.104844
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes