undefined

Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

Year of publication

2021

Authors

DUNE Collaboration

Abstract

The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents.
Show more

Organizations and authors

University of Jyväskylä

Loo Kai Orcid -palvelun logo

Trzaska Wladyslaw Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Journal/Series

Instruments

Publisher

MDPI AG

Volume

5

Issue

4

Article number

31

​Publication forum

90161

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Fully open publication channel

Self-archived

Yes

Other information

Fields of science

Physical sciences

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object]

Publication country

Switzerland

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.3390/instruments5040031

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes