GPU-accelerated time integration of Gross-Pitaevskii equation with discrete exterior calculus
Year of publication
2022
Authors
Kivioja, Markus; Mönkölä, Sanna; Rossi, Tuomo
Abstract
The quantized vortices in superfluids are modeled by the Gross-Pitaevskii equation whose numerical time integration is instrumental in the physics studies of such systems. In this paper, we present a reliable numerical method and its efficient GPU-accelerated implementation for the time integration of the three-dimensional Gross-Pitaevskii equation. The method is based on discrete exterior calculus which allows us the usage of more versatile spatial discretization than traditional finite difference and spectral methods are applicable to. We discretize the problem using six different natural crystal structures and observe the correct choices of spatial tiling to decrease the truncation error and increase the reliability compared to Cartesian grids. We pay attention to the computational performance optimizations of the GPU implementation and measure speedups of up to 152-fold when compared to a reference CPU implementation. We parallelize the implementation further to multiple GPUs and show that 92% of the computation time can fully utilize the additional resources.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
278
Article number
108427
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Mathematics; Computer and information sciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
Netherlands
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1016/j.cpc.2022.108427
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes