undefined

Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds

Year of publication

2022

Authors

Nobili, Francesco; Violo, Ivan Yuri

Abstract

We prove that if M is a closed n-dimensional Riemannian manifold, n \ge 3, with \mathrm{Ric}\ge n-1 and for which the optimal constant in the critical Sobolev inequality equals the one of the n-dimensional sphere \mathbb {S}^n, then M is isometric to \mathbb {S}^n. An almost-rigidity result is also established, saying that if equality is almost achieved, then M is close in the measure Gromov–Hausdorff sense to a spherical suspension. These statements are obtained in the \mathrm {RCD}-setting of (possibly non-smooth) metric measure spaces satisfying synthetic lower Ricci curvature bounds. An independent result of our analysis is the characterization of the best constant in the Sobolev inequality on any compact \mathrm {CD} space, extending to the non-smooth setting a classical result by Aubin. Our arguments are based on a new concentration compactness result for mGH-converging sequences of \mathrm {RCD} spaces and on a Pólya–Szegő inequality of Euclidean-type in \mathrm {CD} spaces. As an application of the technical tools developed we prove both an existence result for the Yamabe equation and the continuity of the generalized Yamabe constant under measure Gromov–Hausdorff convergence, in the \mathrm {RCD}-setting.
Show more

Organizations and authors

University of Jyväskylä

Nobili Francesco

Violo Ivan Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

61

Issue

5

Article number

180

​Publication forum

52940

​Publication forum level

2

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Mathematics

Keywords

[object Object],[object Object]

Publication country

Germany

Internationality of the publisher

International

Language

English

International co-publication

No

Co-publication with a company

No

DOI

10.1007/s00526-022-02284-7

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes