Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data
Year of publication
2022
Authors
Hu, Guoqiang; Li, Huanjie; Zhao, Wei; Hao, Yuxing; Bai, Zonglei; Nickerson, Lisa D.; Cong, Fengyu
Abstract
The study of brain network interactions during naturalistic stimuli facilitates a deeper understanding of human brain function. To estimate large-scale brain networks evoked with naturalistic stimuli, a tensor component analysis (TCA) based framework was used to characterize shared spatio-temporal patterns across subjects in a purely data-driven manner. In this framework, a third-order tensor is constructed from the timeseries extracted from all brain regions from a given parcellation, for all participants, with modes of the tensor corresponding to spatial distribution, time series and participants. TCA then reveals spatially and temporally shared components, i.e., evoked networks with the naturalistic stimuli, their time courses of activity and subject loadings of each component. To enhance the reproducibility of the estimation with the adaptive TCA algorithm, a novel spectral clustering method, tensor spectral clustering, was proposed and applied to evaluate the stability of the TCA algorithm. We demonstrated the effectiveness of the proposed framework via simulations and real fMRI data collected during a motor task with a traditional fMRI study design. We also applied the proposed framework to fMRI data collected during passive movie watching to illustrate how reproducible brain networks are evoked by naturalistic movie viewing.
Show moreOrganizations and authors
University of Jyväskylä
Cong Fengyu
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
255
Article number
119193
ISSN
Publication forum
Publication forum level
2
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
Other information
Fields of science
Computer and information sciences; Neurosciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
Netherlands
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.neuroimage.2022.119193
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes