undefined

Effects of low load exercise with and without blood-flow restriction on microvascular oxygenation, muscle excitability and perceived pain

Year of publication

2023

Authors

Kolind, Mikkel I.; Gam, Søren; Phillip, Jeppe G.; Pareja-Blanco, Fernando; Olsen, Henrik B.; Gao, Ying; Søgaard, Karen; Nielsen, Jakob L.

Abstract

This paper aimed to examine the acute effect of low-load (LL) exercise with blood-flow restriction (LL-BFR) on microvascular oxygenation and muscle excitability of the vastus medialis (VM) and vastus lateralis (VL) muscles during a single bout of unilateral knee extension exercise performed to task failure. Seventeen healthy recreationally resistance-trained males were enrolled in a within-group randomized cross-over study design. Participants performed one set of unilateral knee extensions at 20% of one-repetition maximum (1RM) to task failure, using a LL-BFR or LL free-flow (LL-FF) protocol in a randomized order on separate days. Changes in oxygenation and muscle excitability in VL and VM were assessed using near-infrared spectroscopy (NIRS) and surface electromyography (sEMG), respectively. Pain measures were collected using the visual analog scale (VAS) before and following set completion. Within- and between- protocol comparisons were performed at multiple time points of set completion for each muscle. During LL-BFR, participants performed 43% fewer repetitions and reported feeling more pain compared to LL-FF (p<0.05). Normalized to time to task failure, LL-BFR and LL-FF generally demonstrated similar progression in microvascular oxygenation and muscle excitability during exercise to task failure. The present results demonstrate that LL-BFR accelerates time to task failure, compared with LL-FF, resulting in a lower dose of mechanical work to elicit similar levels of oxygenation, blood-pooling, and muscle excitability. LL-BFR may be preferable to LL-FF in clinical settings where high workloads are contraindicated, although increased pain experienced during BFR may limit its application.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Publisher

Routledge

Volume

23

Issue

4

Pages

542-551

​Publication forum

55812

​Publication forum level

1

Open access

Open access in the publisher’s service

No

Self-archived

Yes

Other information

Fields of science

Sport and fitness sciences

Keywords

[object Object],[object Object],[object Object],[object Object]

Publication country

United Kingdom

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1080/17461391.2022.2039781

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes