Social learning within and across predator species reduces attacks on novel aposematic prey
Year of publication
2020
Authors
Hämäläinen, Liisa; Mappes, Johanna; Rowland, Hannah M.; Teichmann, Marianne; Thorogood, Rose
Abstract
1. To make adaptive foraging decisions, predators need to gather information about the profitability of prey. As well as learning from prey encounters, recent studies show that predators can learn about prey defences by observing the negative foraging experiences of conspecifics. However, predator communities are complex. While observing heterospecifics may increase learning opportunities, we know little about how social information use varies across predator species. 2. Social transmission of avoidance among predators also has potential consequences for defended prey. Conspicuous aposematic prey are assumed to be an easy target for naïve predators, but this cost may be reduced if multiple predators learn by observing single predation events. Heterospecific information use by predators might further benefit aposematic prey, but this remains untested. 3. Here we test conspecific and heterospecific information use across a predator community with wild‐caught blue tits (Cyanistes caeruleus) and great tits (Parus major). We used video playback to manipulate social information about novel aposematic prey and then compared birds’ foraging choices in ‘a small‐scale novel world’ that contained novel palatable and aposematic prey items. 4. We expected that blue tits would be less likely to use social information compared to great tits. However, we found that both blue tits and great tits consumed fewer aposematic prey after observing a negative foraging experience of a demonstrator. In fact, this effect was stronger in blue tits compared to great tits. Interestingly, blue tits also learned more efficiently from watching conspecifics, whereas great tits learned similarly regardless of the demonstrator species. 5. Together, our results indicate that social transmission about novel aposematic prey occurs in multiple predator species and across species boundaries. This supports the idea that social interactions among predators can reduce attacks on aposematic prey and therefore influence selection for prey defences.
Show moreOrganizations and authors
University of Helsinki
Thorogood Rose
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal
Parent publication name
Publisher
Volume
89
Issue
5
Pages
1153-1164
ISSN
Publication forum
Publication forum level
2
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Ecology, evolutionary biology
Publication country
United Kingdom
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1111/1365-2656.13180
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes