undefined

Impact of Si on the high-temperature oxidation of AlCr(Si)N coatings

Year of publication

2022

Authors

Jäger, Nikolaus; Meindlhumer, Michael; Zitek, Michal; Spor, Stefan; Hruby, Hynek; Nahif, Farwah; Julin, Jaakko; Rosenthal, Martin; Keckes, Jozef; Mitterer, Christian; Daniel, Rostislav

Abstract

The resistance of wear protective coatings against oxidation is crucial for their use at high temperatures. Here, three nanocomposite AlCr(Si)N coatings with a fixed Al/Cr atomic ratio of 70/30 and a varying Si-content of 0 at.%, 2.5 at.% and 5 at.% were analyzed by differential scanning calorimetry, thermogravimetric analysis and X-ray in order to understand the oxidation behavior depending on their Si-content. Additionally, a partially oxidized AlCrSiN coating with 5 at.% Si on a sapphire substrate was studied across the coating thickness by depth-resolved cross-sectional X-ray nanodiffraction and scanning trans-mission electron microscopy to investigate the elemental composition, morphology, phases and residual stress evolution of the oxide scale and the non-oxidized coating underneath. The results reveal enhanced oxidation properties of the AlCr(Si)N coatings with increasing Si-content, as demonstrated by a retarded onset of oxidation to higher temperatures from 1100°C for AlCrN to 1260°C for the Si-containing coatings and a simultaneous deceleration of the oxidation process. After annealing of the AlCrSiN sample with 5 at.% Si at an extraordinary high temperature of 1400°C for 60 min in ambient air, three zones developed throughout the coating strongly differing in their composition and structure: (i) a dense oxide layer comprising an Al-rich and a Cr-rich zone formed at the very top, followed by (ii) a fine-grained transition zone with incomplete oxidation and (iii) a non-oxidized zone with a porous structure. The varying elemental composition of these zones is furthermore accompanied by micro-structural variations and a complex residual stress development revealed by cross-sectional X-ray nanodiffraction. The results provide a deeper understanding of the oxidation behavior of AlCr(Si)N coatings depending on their Si-content and the associated elemental, microstructural and residual stress evolution during high-temperature oxidation.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

100

Pages

91-100

​Publication forum

60949

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Physical sciences; Materials engineering; Nanotechnology

Keywords

[object Object],[object Object],[object Object],[object Object]

Publication country

United Kingdom

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

Yes

DOI

10.1016/j.jmst.2021.04.065

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes